Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergism in Multicomponent Self-Propagating Molecular Assemblies

Identifieur interne : 002430 ( Main/Repository ); précédent : 002429; suivant : 002431

Synergism in Multicomponent Self-Propagating Molecular Assemblies

Auteurs : RBID : Pascal:11-0199994

Descripteurs français

English descriptors

Abstract

Multicomponent self-propagating molecular assemblies (SPMAs) have been generated from an organic chromophore, a redox-active polypyridyl complex, and PdC2. The structure of the multicomponent SPMA is not a linear combination of two assemblies generated with a single molecular constituent. Surface-confined assemblies formed from only the organic chromophore and PdCl2 are known to follow linear growth, whereas the combination of polypyridyl complexes and PdCl2 results in exponential growth. The present study demonstrates that an iterative deposition of both molecular building blocks with PdCl2 results in an exponentially growing assembly. The nature of the assembly mechanism is dictated by the polypyridyl complex and overrides the linear growth process of the organic component. Relatively smooth, multicomponent SPMAs have been obtained with a thickness of ∼20 nm on silicon, glass, and indium-tin oxide (ITO) coated glass. Detailed information of the structure and of the surface-assembly chemistry were obtained using transmission oplical (UV Vis) spectroscopy. elipsometry. atomic force microscopy (AFM). synchrotron X-ray reflectivity (XRR), and electrochemistry.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0199994

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Synergism in Multicomponent Self-Propagating Molecular Assemblies</title>
<author>
<name sortKey="Motiei, Leila" uniqKey="Motiei L">Leila Motiei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Organic Chemistry, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sassi, Mauro" uniqKey="Sassi M">Mauro Sassi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Organic Chemistry, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaminker, Rcvital" uniqKey="Kaminker R">Rcvital Kaminker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Organic Chemistry, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Evmencnko, Guennadi" uniqKey="Evmencnko G">Guennadi Evmencnko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, Northwestern University</s1>
<s2>Evanston. Illinois 60208-3113</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston. Illinois 60208-3113</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dutta, Pulak" uniqKey="Dutta P">Pulak Dutta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, Northwestern University</s1>
<s2>Evanston. Illinois 60208-3113</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston. Illinois 60208-3113</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iron, Mark A" uniqKey="Iron M">Mark A. Iron</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical Research Support, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Der Boom, Milko E" uniqKey="Van Der Boom M">Milko E. Van Der Boom</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Organic Chemistry, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0199994</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0199994 INIST</idno>
<idno type="RBID">Pascal:11-0199994</idno>
<idno type="wicri:Area/Main/Corpus">003290</idno>
<idno type="wicri:Area/Main/Repository">002430</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0743-7463</idno>
<title level="j" type="abbreviated">Langmuir</title>
<title level="j" type="main">Langmuir</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Chemistry</term>
<term>Chromophore</term>
<term>Complexes</term>
<term>Confinement</term>
<term>Deposition</term>
<term>Electrochemistry</term>
<term>Glass</term>
<term>Growth</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Mechanism</term>
<term>Molecular assembly</term>
<term>Reflectance</term>
<term>Self assembly</term>
<term>Silicon</term>
<term>Supramolecular structure</term>
<term>Synchrotrons</term>
<term>Synergism</term>
<term>Thickness</term>
<term>Tin oxide</term>
<term>Ultraviolet visible spectrometry</term>
<term>X ray</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Synergie</term>
<term>Autoassemblage</term>
<term>Assemblage moléculaire</term>
<term>Structure supramoléculaire</term>
<term>Interface</term>
<term>Chromophore</term>
<term>Complexe</term>
<term>Confinement</term>
<term>Croissance</term>
<term>Dépôt</term>
<term>Mécanisme</term>
<term>Epaisseur</term>
<term>Silicium</term>
<term>Verre</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Chimie</term>
<term>Spectrométrie UV visible</term>
<term>Microscopie force atomique</term>
<term>Synchrotron</term>
<term>Rayon X</term>
<term>Facteur réflexion</term>
<term>Electrochimie</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Chimie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Multicomponent self-propagating molecular assemblies (SPMAs) have been generated from an organic chromophore, a redox-active polypyridyl complex, and PdC
<sub>2</sub>
. The structure of the multicomponent SPMA is not a linear combination of two assemblies generated with a single molecular constituent. Surface-confined assemblies formed from only the organic chromophore and PdCl
<sub>2</sub>
are known to follow linear growth, whereas the combination of polypyridyl complexes and PdCl
<sub>2</sub>
results in exponential growth. The present study demonstrates that an iterative deposition of both molecular building blocks with PdCl
<sub>2</sub>
results in an exponentially growing assembly. The nature of the assembly mechanism is dictated by the polypyridyl complex and overrides the linear growth process of the organic component. Relatively smooth, multicomponent SPMAs have been obtained with a thickness of ∼20 nm on silicon, glass, and indium-tin oxide (ITO) coated glass. Detailed information of the structure and of the surface-assembly chemistry were obtained using transmission oplical (UV Vis) spectroscopy. elipsometry. atomic force microscopy (AFM). synchrotron X-ray reflectivity (XRR), and electrochemistry.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0743-7463</s0>
</fA01>
<fA02 i1="01">
<s0>LANGD5</s0>
</fA02>
<fA03 i2="1">
<s0>Langmuir</s0>
</fA03>
<fA05>
<s2>27</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Synergism in Multicomponent Self-Propagating Molecular Assemblies</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Supramolecular Chemistry at Interfaces Special Issue</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MOTIEI (Leila)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SASSI (Mauro)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KAMINKER (Rcvital)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EVMENCNKO (Guennadi)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DUTTA (Pulak)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>IRON (Mark A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VAN DER BOOM (Milko E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ZHANG (Xi)</s1>
<s9>limin.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WHITTEN (David G.)</s1>
<s9>limin.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Organic Chemistry, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical Research Support, Wetzmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Astronomy, Northwestern University</s1>
<s2>Evanston. Illinois 60208-3113</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Tsinghua University</s1>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>The University of New Mexico</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1319-1325</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20642</s2>
<s5>354000190739160120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>76 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0199994</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Langmuir</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Multicomponent self-propagating molecular assemblies (SPMAs) have been generated from an organic chromophore, a redox-active polypyridyl complex, and PdC
<sub>2</sub>
. The structure of the multicomponent SPMA is not a linear combination of two assemblies generated with a single molecular constituent. Surface-confined assemblies formed from only the organic chromophore and PdCl
<sub>2</sub>
are known to follow linear growth, whereas the combination of polypyridyl complexes and PdCl
<sub>2</sub>
results in exponential growth. The present study demonstrates that an iterative deposition of both molecular building blocks with PdCl
<sub>2</sub>
results in an exponentially growing assembly. The nature of the assembly mechanism is dictated by the polypyridyl complex and overrides the linear growth process of the organic component. Relatively smooth, multicomponent SPMAs have been obtained with a thickness of ∼20 nm on silicon, glass, and indium-tin oxide (ITO) coated glass. Detailed information of the structure and of the surface-assembly chemistry were obtained using transmission oplical (UV Vis) spectroscopy. elipsometry. atomic force microscopy (AFM). synchrotron X-ray reflectivity (XRR), and electrochemistry.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01I</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Synergie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Synergism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sinergia</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Autoassemblage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Self assembly</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Autoensamble</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Assemblage moléculaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Molecular assembly</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ensamble molecular</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Structure supramoléculaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Supramolecular structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Estructura supramolecular</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Interface</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Chromophore</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chromophore</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cromóforo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Complexe</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Complexes</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Complejo</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Confinement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Confinement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Confinamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Croissance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Growth</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Crecimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dépôt</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Deposition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Depósito</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mécanisme</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mechanism</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mecanismo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Verre</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Glass</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Chimie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Chemistry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Química</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Spectrométrie UV visible</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Ultraviolet visible spectrometry</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Espectrometría UV visible</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Synchrotron</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Synchrotrons</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Sincrotrón</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Rayon X</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>X ray</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Rayos X</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Facteur réflexion</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Reflectance</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Coeficiente reflexión</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Electrochimie</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electrochemistry</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Electroquímica</s0>
<s5>23</s5>
</fC03>
<fN21>
<s1>136</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0199994
   |texte=   Synergism in Multicomponent Self-Propagating Molecular Assemblies
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024